

Laser Safety

The ILD23x0-x operates with a semiconductor laser with a wavelength of 670 nm (visible/red).
• If both warning labels are covered over when the unit is installed, the user must ensure that supplementary labels are applied.
Observe the national laser protection regulations.

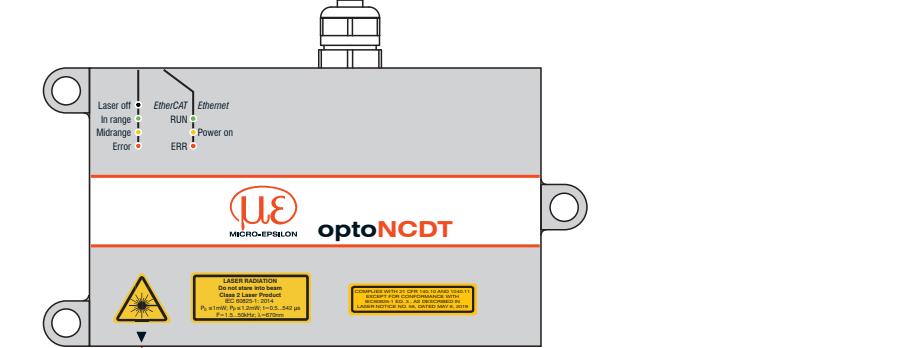
Operation of the laser is indicated visually by the LED on the sensor. The housing of the optical sensors may only be opened by the manufacturer. For repair and service purposes, the sensors must always be sent to the manufacturer.

Please observe national regulations, e. g., Laser Notice No. 50 for the USA.

During operation of the sensor, the pertinent regulations according to IEC 60825-1 on „Safety of laser products“ must be fully observed at all times.

Laser Class 2

The sensors fall within laser class 2. The laser is operated on a pulsed mode, the maximum optical power is ≤ 1.2 mW. The pulse frequency depends on the adjusted measuring rate (1.5 ... 49.14 kHz). The pulse duration of the peaks is regulated depending on the measuring rate and reflectivity of the target and can be 0.5 up to 542 μ s.


CAUTION Laser radiation. Irritation or injury of the eyes possible. Close your eyes or immediately turn away if the laser beam hits the eye.

The following warning labels are attached to the cover (front and rear side) of the sensor housing:

Laser warning sign and laser label, ILD23x0

Only for USA

Sensor with laser labels laser class 2

Laser Class 3R

The sensors fall within Laser Class 3R. The laser is operated on a pulsed mode, the average power is ≤ 5 mW in each case, the peak power can be up to 6 mW. The pulse frequency depends on the adjusted measuring rate /1.5 ... 49.140 kHz). The pulse duration of the peaks is regulated depending on the measuring rate and reflectivity of the target and can be 0.5 up to 542 μ s.

CAUTION

Laser radiation. Irritation or injury of the eyes possible. Use suitable protective equipment and close your eyes or immediately turn away if the laser beam hits the eye.

The following warning labels are attached to the cover (front and rear side) of the sensor housing:

Laser warning sign and laser label, ILD23x0-x

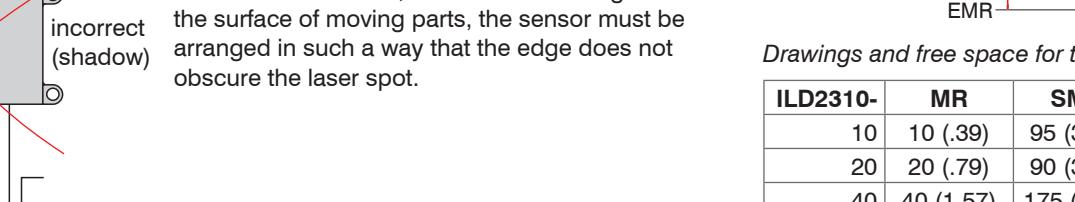
Only for USA

Near laser output

The accessible laser radiation is harmful to the eyes. Looking directly into the laser beam is harmful to the eyes with laser class 3R devices. Reflections of shiny or mirroring surfaces are also harmful to the eyes.

Class 3R laser sensors require a laser protection officer. Mark the laser area recognizable and everlasting. During operation the laser area has to be restricted and marked.

Sensor with laser labels laser class 3R


Optimizing the Measurement Accuracy

Alignment to a wall
In order to suppress stray reflections, a corresponding clearance around the reception area of the sensor must be kept free.

Turning object
The sensor should ideally be aligned along the axis of rotation.

Color change
The sensor should ideally be aligned at 90° to the direction of movement/color change.

In case of bore holes, blind holes and edges in the surface of moving parts, the sensor must be arranged in such a way that the edge does not obscure the laser spot.

Sensor Mounting

The optoNCDT 23x0 sensor is an optical system for measurements with micrometer accuracy.

• Ensure careful handling during installation and operation!

!

► Mount the sensor only to the existing through-bores on a flat surface. Any type of clamping is not permitted.

► Use three M4 or M5 screws to mount the sensors. The bearing surfaces surrounding the through-holes (fastening holes) are slightly raised.

Bolt connection

Housing M
Bolt length 35 mm

Tightening torque

$\mu = 0.12$

2 Nm

Tightening torque

$\mu = 0.12$

3.5 Nm

Tightening torque

$\mu = 0.12$

2 Nm

Direct fastening

Housing M
Screwing depth Minimum 8 mm

Maximum 10 mm

Tightening torque

$\mu = 0.12$

3.5 Nm

Tightening torque

$\mu = 0.12$

3.5 Nm

Tightening torque

$\mu = 0.12$

3.5 Nm

Tightening torque

$\mu = 0.12$

3.5 Nm

Tightening torque

$\mu = 0.12$

3.5 Nm

Tightening torque

$\mu = 0.12$

3.5 Nm

Tightening torque

$\mu = 0.12$

3.5 Nm

Tightening torque

$\mu = 0.12$

3.5 Nm

Tightening torque

$\mu = 0.12$

3.5 Nm

Tightening torque

$\mu = 0.12$

3.5 Nm

Tightening torque

$\mu = 0.12$

3.5 Nm

Tightening torque

$\mu = 0.12$

3.5 Nm

Tightening torque

$\mu = 0.12$

3.5 Nm

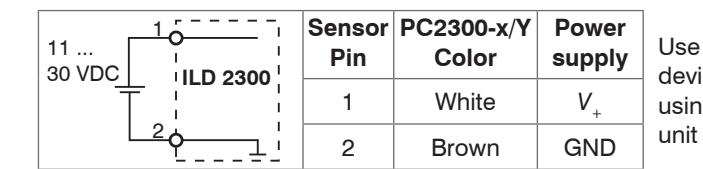
Inputs and Outputs

Signal Designation	Sensor Pin	Comments	PC2300-x/SUB-D cable ¹
			15-pin sub-D
V_+	1	Supply voltage (11...30 VDC)	1
GND	2	System ground for supply and reference ground for RS422 level	9
+Laser on/off	3	Optocoupler input, electrically isolated Laser off: $V_{IN} \leq 0.8$ V (Low) Laser on: $2.8 \leq V_{IN} \leq 30$ V (High)	2
-Laser on/off	4		10
Sync-in/out ²	5	Synchronous or trigger signals, symmetrical, RS422 level, terminating resistor 120 ohm switchable, input or output can be selected depending on synchronization mode	3
/Sync-in/out ²	6		11
RxD-RS422	7	Serial RS422 input, symmetrical, internally terminated with 120 ohm	4
/RxD-RS422	8		12
TxD-RS422	9	Serial RS422 output, symmetrical	5
/TxD-RS422	10		13
Tx - Ethernet	11	Ethernet output, electrically isolated	6
/Tx - Ethernet	12		14
Rx - Ethernet	13	Ethernet input, electrically isolated	7
/Rx - Ethernet	14		15
Shield		Housing no galvanic connection to GND	Housing

1)

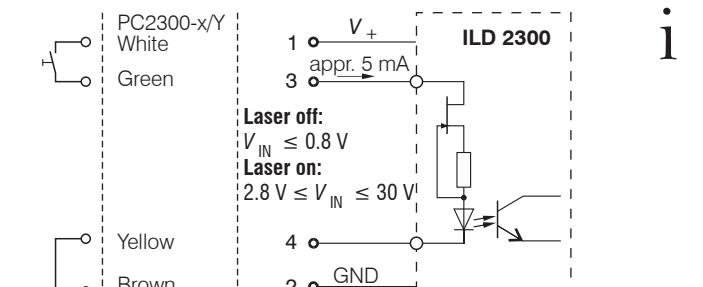
Other cables are optionally available.

2)


In trigger mode, the input is used for triggering.

Connector: ODU MINI-SNAP, 14 poles, B series, size 2, coding F, IP68.

Round sensor connector, view on solder pin side cable connector

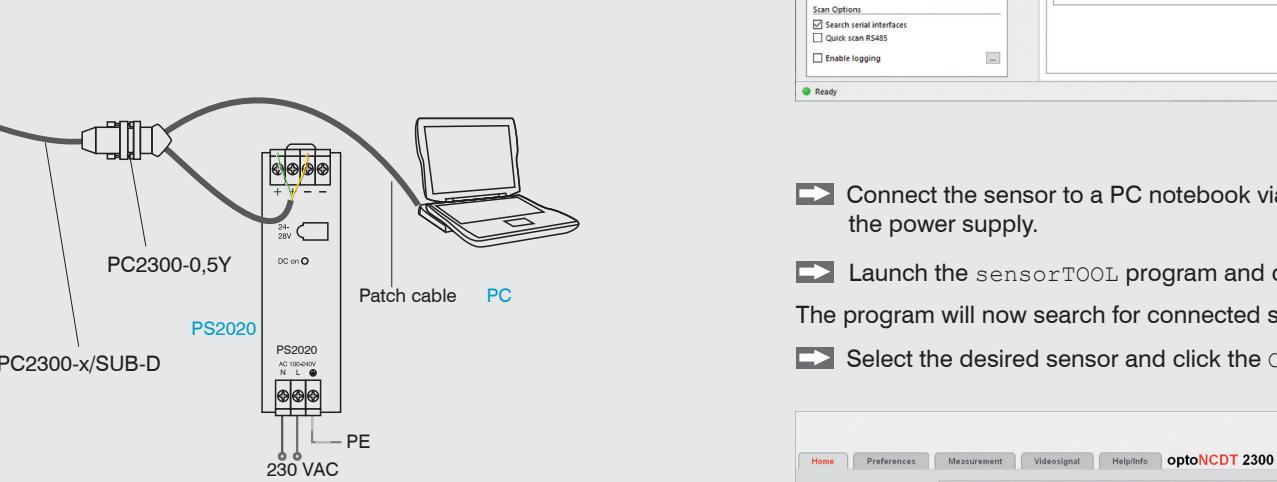


Supply Voltage, Nominal value: 24 V DC (11 ... 30 V, max. 150 mA)

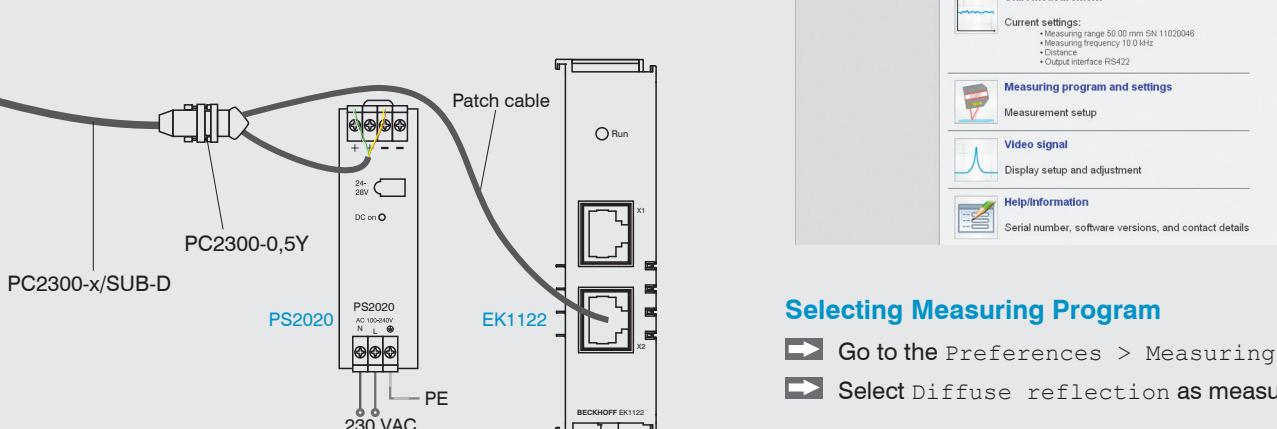
Use the supply voltage only for measuring devices. MICRO-EPSILON recommends using an optional available power supply unit PS2020 for the sensor.

Turning on Laser

The laser remains off as long as pin 3 is not electrically connected to V_+ and pin 4 to GND.



Quick Guide


Structure of the Components

- Sensor
 - Power supply
 - Laptop / PC + USB/Ethernet adapter + Ethernet cable
- Mount the sensor and connect the components to one another.

Ethernet Connection

EtherCAT Connection

The laser remains off as long as pin 3 is not electrically connected to V_+ and pin 4 to GND.

Initial Operation

The sensorTOOL program is available online at www.micro-epsilon.com/service/download/software/.

The sensor is shipped with the factory-set IP address 169.254.168.150. You can query the IP addresses of the sensors that are connected to a PC or network by using the sensorTOOL program.

Saving the Settings

- Go to the Preferences > Load/save settings menu.

- Choose a Setup No and click the Save setup button.

Positioning the Target

- Position the target as centrally as possible within the measuring range.

► Connect the sensor to a PC notebook via a PC2300-x/SUB-D and a PC2300-0,5Y. Connect the power supply.

► Launch the sensorTOOL program and click on the Sensor button.

The program will now search for connected sensors on the available interfaces.

► Select the desired sensor and click the Open Website button.

The start screen of the sensor software should now be displayed in the web browser.

► Save the changes by clicking the Save setup button in the Preferences menu.

You can select other interactive web pages for programming the sensor.

Selecting Digital Interface

- Go to the Preferences > Digital interfaces > Digital interface selection menu.

- Select Web diagram and confirm with Submit.

Selecting Measuring Program

- Go to the Preferences > Measuring program menu.

- Select Diffuse reflection as measurement arrangement and confirm with Submit.

Select a Measuring Rate

- Go to the Preferences > Measuring rate menu.

Start with a medium measuring rate. Select a measuring rate from the list. Confirm with Submit.

Distance Measurement

- Go to the Preferences > Measuring program menu and select Direct reflection - distance measurement as measurement arrangement.

- Switch to the Measurement menu.

- Go to the Preferences > Load/save settings menu.

- Choose a Setup No and click the Save setup button.

- Position the target as centrally as possible within the measuring range.

- Connect the sensor to a PC notebook via a PC2300-x/SUB-D and a PC2300-0,5Y. Connect the power supply.

- Launch the sensorTOOL program and click on the Sensor button.

The program will now search for connected sensors on the available interfaces.

- Select the desired sensor and click the Open Website button.

The start screen of the sensor software should now be displayed in the web browser.

► Save the changes by clicking the Save setup button in the Preferences menu.

You can select other interactive web pages for programming the sensor.

The Status LED on the sensor indicates the position of the target to the sensor.

LED	Color	Label	Meaning
Status	Off	Laser off	Laser beam is switched off
	Green	In range	Sensor in operation, target in the measuring range
	Yellow	Midrange	Target is in the mid of measuring range
	Red	Error	Target outside the measuring range, too low reflection

► Go to the Preferences > Measuring program menu and select Direct reflection - thickness measurement as measurement arrangement.

► Select the target material from the list and confirm with Submit.

► Go to the Preferences > Load/save settings menu.

► Select a Setup No and click the Save setup button.

You can find more information about the sensor in the operating instructions. They are available online at www.micro-epsilon.com/download/manuals/manual-opts-2300-english.pdf

